Approximation Techniques for Non-linear Problems with Continuum of Solutions
نویسندگان
چکیده
Most of the working solvers for numerical constraint satisfaction problems (NCSPs) are designed to delivering point-wise solutions with an arbitrary accuracy. When there is a continuum of feasible points this might lead to prohibitively verbose representations of the output. In many practical applications, such large sets of solutions express equally relevant alternatives which need to be identified as completely as possible. The goal of this paper is to show that by using appropriate approximation techniques, explicit representations of the solution sets, preserving both accuracy and completeness, can still be proposed for NCSPs with continuum of solutions. We present a technique for constructing concise inner and outer approximations as unions of interval boxes. The proposed technique combines a new splitting strategy with the extreme vertex representation of orthogonal polyhedra [1–3], as defined in computational geometry. This allows for compacting the representation of the approximations and improves efficiency.
منابع مشابه
Some New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity
The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملNonlinear Analysis of Flow-induced Vibration in Fluid-conveying Structures using Differential Transformation Method with Cosine-Aftertreatment Technique
In this work, analytical solutions are provided to the nonlinear equations arising in thermal and flow-induced vibration in fluid-conveying structures using Galerkin-differential transformation method with cosine aftertreatment technique. From the analysis, it was established that increase of the length and aspect ratio of the fluid-conveying structures result in decrease the nonlinear vibratio...
متن کاملDetecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کامل